China Hot selling Sem639 Lw250 Wa270 Wheel Loader Hydraulic Pump (705-55-23040 705-53-42000 705-53-42010 705-53-31020 705-56-36040 near me shop

Product Description

  construction machine pump

gear pump , hydraulic pump , main pump , WATER pump
fit machine :
Dozer: D31 D53 D60 D65 D75 D80 D85 D135 D155 D355 D375 D475
Loader: WA100 WA120 WA180 WA200 WA320 WA380 WA420 WA450 WA480 WA500 WA600 WA900
EXCAVATOR: PC30 PC35 PC55 PC75 PC120 PC160 PC20 PC220 PC240 PC300 PC350 PC360 PC400 PC450 PC650 PC750 PC1250
MOTOR: GD55 GD605 GD705
DUMP:  HD325 HD405 HD460
Engine : 6D95 6D12 6D108 6D110 6D114 6D125 6D140 6D155 6D170
211-7895    211-7895 BELT TENSIONER 
274-6851    274-6851 GASKET-TURBOCHARGER
291-5480    291-5480 TURBOCHARGER GP
230-2781    230-2781 HOSE-RADIATOR
230-2782    230-2782 HOSE-RADIATOR 
114-4246    114-4246
149-7756    149-7756
9W-4480    9W-4480
3S-1349    3S-1349
123-8686    123-8686
6I-2433    6I-2433
119-4774    119-4774
 4Р-8730     4Р-8730
204-7449    204-7449
9Х-3463    9Х-3463
6Т-1140    6Т-1140
134-8210    134-8210
135-9960    135-9960
5L-4751    5L-4751
117-4015    117-4015
6Р-8369    6Р-8369
9G-7127    9G-7127
127-3422    127-3422
117-4013    117-4013
9Р-6912    9Р-6912
7Т-4865    7Т-4865
8Т-5718    8Т-5718
4D-4508    4D-4508
7Т-2770    7Т-2770
196-9957    196-9957
7Т-9307    7Т-9307
184-4395    184-4395
8С-6857    8С-6857
067-3161    067-3161
6V-1728    6V-1728
7Т-2283    7Т-2283
116-8052    116-8052
203-2199    203-2199
160-4926    160-4926
7Н-3609    7Н-3609
7Т-1248    7Т-1248
5Р-8249    5Р-8249
9Х-7505    9Х-7505
6I-2431    6I-2431
134-7321    134-7321
5Р-0764    5Р-0764
161-0018    161-0018
3В-8489    3В-8489
7W-7026    7W-7026
600-185-4210    600-185-4210 ФИЛЬТР
207-63-76170    207-63-76170 BUSHING
207-70-73250    207-70-73250 BUSHING
207-70-73250    207-70-73250 BUSHING
207-70-72351    207-70-72351 BUSHING
207-60-51310    207-60-51310 ELEMENT
207-70-33181    207-70-33181 O-RING
207-70-73280    207-70-73280
6742-01-4120 / 6742-01-4540     6742-01-4120 CARTRIDGE


Types of V-Belt Drives

When evaluating drive technologies, you might want to consider a V-Belt. Not only can it improve the performance of an older drive, but it can save you time and money in the long run. Industry standard V-belts are prone to failing because of excessive wear, heat cracks, and stretching. Inefficient and downtime resulting from frequent retensioning and replacement can cost your company both time and money.


A cross-belt for a V-Belt is a belt that is used in a conveyor system. This belt consists of 2 parts: an elastomer core and a fabric cover. The elastomer core is typically made of high-shock-resistant polyurethane. Different manufacturers have different synthetic rubber stocks, which may be used to prevent premature failure and extend the operating temperature range of the belt. Ideally, a well-engineered V-belt is stiff in the width and flexible along the length of the belt. The fabric covers are generally made of 2 different types of rubber, including compression and cushion rubber.
The diameter of the driver and driven pulleys are important considerations for choosing the right cross-belt for a V-belt. This will determine the belt length. The length should be proportional to the diameter of the drive shaft. Smaller diameters are better for smaller belts, which can increase elongation, which decreases the life of the belt. Larger diameters, on the other hand, can increase slippage, fluctuating force, and power loss.
Choosing the right V-belt for your vehicle is important, especially if you’re replacing a worn-out one. In some cases, the old V-belt may become too loose or a loop with a rubber-coated edge. You should measure the length of the belt before you buy it. Using a flexible english measuring tape, you can determine which size is best for your vehicle.
A cross-belt can increase power transmission by minimizing slipping. It also provides shock-absorption and increases the load capacity of the V-belt. It is the best option for heavy-duty machines where torque and power are critical. In some applications, this belt may be more effective than an open belt. If you use it for short distances, a cross-belt can be a better choice.
When choosing a V-belt, make sure to check the power ratio. The power of a belt depends on the initial tension applied to it. Also, the friction between the 2 mating surfaces is a factor. A V-belt with a high power density is not suitable for close-center applications. You can choose a narrow V-belt if you need a narrow belt for your machine.


The V-belt is a versatile belt used in countless industrial applications. Advancements in engineering have led to many different types of V-belts. Whether it’s a U-shaped belt or a double-sided V-belt, proper installation and maintenance are crucial for trouble-free operation. Below are some common V-belt specifications. Read on to learn more! The U-shaped V-belt is 1 of the most common.
A V-belt is a flexible, pliable machine element used to transmit power between 2 or more rotating shafts. Its cross-section is trapezoidal, so that as the tension increases on 1 side, the belt wedges into the groove on the opposite side. The increased friction between the 2 components results in a high torque transmission and minimal power loss from slippage. U-shaped V-belts are ideal for a variety of applications, from lawn mowers to cars.
The U-shaped V-belt is made of 2 parts: an elastomer core and a textile cover. The core is made from a flexible material with high flexural strength and shock resistance. The cover is made of textile material that is treated to create a chemical bond with the belt’s core material. This makes it pliable and strong while preventing the cover from becoming worn out or damaged.
Unlike flat belts, U-shaped V-belts are designed to fit into a U-shaped sheave, which increases their lateral rigidity. They also maintain their stability under shock and vibration loads. Their simplicity makes installation and tensioning much easier. The constructional components of a standard V-belt are illustrated in Figure 9. Each component has a vital role in the belt’s performance. Similarly, different materials can influence the belt’s performance.
As with any belt, proper tension is crucial. Having a loose belt causes slippage and rapid wear, which robs you of energy and productivity. Likewise, too much tension can cause premature belt wear. Proper tension is defined as the lowest level at which the belt does not slip or squeal under peak load. This tension range can still operate a drive, so it’s important to find the correct tension for your particular application.


There are many advantages of a Cogged V-Belt. Its extra-thick construction allows for bends around smaller pulleys. It also runs cooler and lasts longer than a traditional V-belt. In addition, it has a higher coefficient of friction than a wrapped V-belt. Cogged V-Belts can also resist heat, making them an excellent choice for high-temperature applications.
A cogged V-Belt is also less likely to suffer from heat buildup, which can shorten the life of a standard belt and increase downtime and replacement costs. A Cogged V-Belt is more expensive than a wrap-molded belt, but it will pay for itself in as little as 1 month. Most synchronous belt conversions pay for themselves in less than 2 years. A longer payback time is typical with a larger system.
Cogged V-Belts are used in many applications, including in-line conveyors, gantry cranes, and wind turbines. The belt itself is composed of various types of rubber and reinforcements. They undergo tensile and compressive stresses as each segment of the belt passes through the pulley. Therefore, a different type of material is needed for the bottom side of the belt. The ideal material for this area should have a high coefficient of friction and increased wear resistance.
The Cogged V-Belt has a trapezium-shaped cross-section. The fabric cover resists heat and abrasion and helps protect the internal components of the v-belt. The different types of materials used in the fabric cover are patented. In some cases, the fabric cover is made of Kevlar or aramid fiber. This allows for smaller pulley diameters and more flexibility.
A Cogged V-Belt is made of 2 pieces of material. One is thick and includes a pitch line while the other has a slack side. The top is thicker and wider, while the bottom side has a lower pitch line. The slack side has a less pitch and more tension. Using a Cogged V-Belt will increase your productivity and help you save money.


The Wedge V-Belt is 1 of the most popular types of drive belts available. The patented, narrow-profile design allows for lighter, thinner belts with greater transmission capabilities. The HY-T V-Belt is constructed with Vytacord tension members for strength and dimensional stability, and includes a cushion made of engineered rubber compound. This belt is ideal for high-speed, high-resistance applications, such as compressors, stone mills, and centrifugal pumps.
HY-T CZPT(r) belts have a continuous V-section, and a wide angle of flexibility. They provide torsional rigidity in long-center drives and are resistant to oil. The CZPT(r) belt is available in lengths up to 140 inches. Its free ribs wedge into the sheave groove to reduce belt whipping. This belt is also designed to fit into new designs and applications, so it’s compatible with virtually any type of drive.
The Wedge V-Belt is a popular choice in industrial applications. Its narrow profile reduces drive weight and space, allowing for higher horsepower. In addition, it can carry a higher load than a standard V belt. Its low cost and high efficiency make it a popular choice for many industrial applications. In addition to industrial settings, it is a popular choice in automotive and construction applications. While it may seem like a complicated belt design, the Wedge V-Belt is ideal for industrial use.
Wedge V-Belts have the same contact angle as the traditional v-belt, but have a narrow upper width. Their narrower upper width decreases their weight, which equalizes the tension on the tensile cord. The wedge-shaped design improves grip and increases wedge effect. Its durability is excellent, and it also features a cog shape for greater gripping power.
Wedge V-Belts are an efficient way to transmit power between 2 drives. They can move significant loads and can achieve very high speeds. The wedged shape of the belt allows it to wedge into the groove when the load increases. Moreover, it minimizes power loss due to slippage. If you want to get the most out of a Wedge V-Belt, make sure it is made of a material that resists heat and moisture.

China Hot selling Sem639 Lw250 Wa270 Wheel Loader Hydraulic Pump (705-55-23040 705-53-42000 705-53-42010 705-53-31020 705-56-36040     near me shop China Hot selling Sem639 Lw250 Wa270 Wheel Loader Hydraulic Pump (705-55-23040 705-53-42000 705-53-42010 705-53-31020 705-56-36040     near me shop